Neural stem cells: from fly to vertebrates.
نویسندگان
چکیده
Our goal in this review is to explore the relationship between Drosophila and vertebrate neural stem cell development by comparing progress in each system with the aim of answering several central questions in stem cell biology: (a) How are stem cells formed? (b) Do stem cells divide symmetrically or asymmetrically? (c) How is stem cell fate maintained? (d) How is stem cell differentiation initiated? (e) How are different stem cell fates determined? (f) How "plastic" are different neural stem cell fates? (g) How do neural stem cells produce different progeny? and (h) What regulates stem cell proliferation versus quiescence? Not surprisingly, research in Drosophila and vertebrate systems each have their own biases, strengths, and weaknesses; we hope that by directly comparing progress in each field, new experiments and interpretations in both vertebrate and Drosophila research will become apparent. It has become increasingly clear that vertebrates and Drosophila share many fundamental mechanisms of neurogenesis, validating a comparative approach.
منابع مشابه
Emergence of signs of neural cells after exposure of bone marrow-derived mesenchymal stem cells to fetal brain extract
Objective(s): Nowadays much effort is being invested in order to diagnose the mechanisms involved in neural differentiation. By clarifying this, making desired neural cells in vitro and applying them into diverse neurological disorders suffered from neural cell malfunctions could be a feasible choice. Thus, the present study assessed the capability of fetal brain extract (FBE) to induce rat bon...
متن کاملA region of the vertebrate neural plate in which neighbouring cells can adopt neural or epidermal fates
Cells in the neurogenic region of the fly, Drosophila melanogaster, become either neural stem cells or epidermis and the selection of the former requires the activity of the proneural genes [1]. In contrast, it is commonly thought that all cells in the vertebrate neural plate contribute to the neural tube and that consequently there is no need for the selection of individual neural precursors (...
متن کاملStudy on Effect of Head, Tail, and Limbud extracts of Mouse on Differentiation of Hair Follicle Stem Cells to Neural cells
Introduction: Adult stem cells are the group of cells which conserve their nature in tissues and organs among other cells. In recent years, the researchers reported the existence of stem cells on the Bulge of hair follicles near to the smooth muscle. It is possible to differentiate these stem cells to neural cells by induction of Shh, FGF, and RA factors. Because of existence of these factors ...
متن کاملIsolation and Differentiation of Neural Stem/Progenitor Cells From Subventricular Zone of One Adult Rat
Introduction: In adult mammalian brain, neural stem cells are isolated from both the dentate gyrus and subventricular zone. This study aimed to isolate neural stem cells from adult rat subventricular zone and differentiate them into neurons and astrocytes. Methods: In this study, the whole brain was removed after full anesthesia and creating cervical dislocation. Under a microscope, subv...
متن کاملHarvesting of bone marrow mesenchymal stem cells from live rats and the in vitro differentiation of bone marrow mesenchymal stem cells into neuron-like cells
In the bone marrow, there are certain populations of stem cell sources with the capacity to differentiate into several different types of cells. Ideally, cell transplants would be readily obtainable, easy to expand and bank, and capable of surviving for sufficient periods of time. Bone marrow mesenchymal stem cells (BM-MSCs) possess all of these characteristics. One of the most important benefi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neurobiology
دوره 36 2 شماره
صفحات -
تاریخ انتشار 1998